University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Civil Engineering Theses, Dissertations, and Student Research

Civil Engineering

Winter 1-10-2017

Evaluation of Thin Asphalt Overlay Pavement Preservation in Nebraska: Laboratory Tests, MEPDG, and LCCA (17-2624)

S. Im Texas A&M Transportation Institute

University of Nebraska-Lincoln

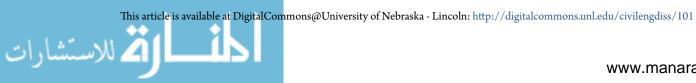
Y. Kim University of Nebraska-Lincoln

G. Nsengiyumva University of Nebraska-Lincoln

R. Rea Nebraska Department of Roads

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/civilengdiss Part of the <u>Civil and Environmental Engineering Commons</u>


Im, S.; University of Nebraska-Lincoln; Kim, Y.; Nsengiyumva, G.; Rea, R.; and Haghshenas, Hamzeh, "Evaluation of Thin Asphalt Overlay Pavement Preservation in Nebraska: Laboratory Tests, MEPDG, and LCCA (17-2624)" (2017). *Civil Engineering Theses, Dissertations, and Student Research*. 101. http://digitalcommons.unl.edu/civilengdiss/101

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

S. Im, University of Nebraska-Lincoln, Y. Kim, G. Nsengiyumva, R. Rea, and Hamzeh Haghshenas

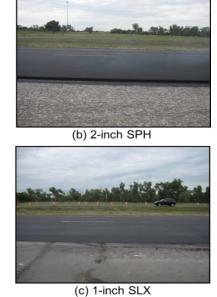
www.manaraa.com

Evaluation of Thin Asphalt Overlay Pavement Preservation in Nebraska: Laboratory Tests, MEPDG, and LCCA (17-2624)

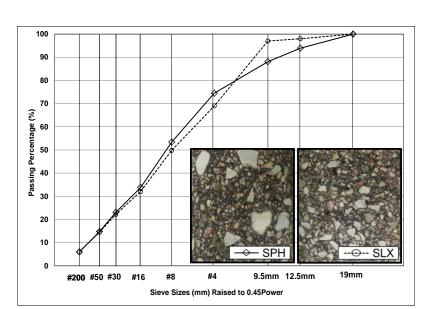
MOTIVATION

- \checkmark Thin asphalt overlays offer an economical resurfacing, preservation, and renewal paving solution for roads that require safety and smoothness improvements.
- ✓ Recently, thin asphalt overlays have been used in Nebraska as a promising pavement preservation technique that needs evaluations.

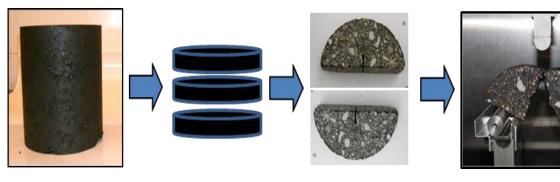
OBJECTIVE


 \checkmark To evaluate the thin asphalt overlay practice recently implemented in Nebraska:

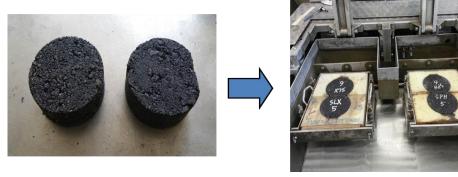
SPH (2-inch conventional practice) vs. SLX (1-inch thin-lift) practice)


RESEARCH METHOD

- **Step 1**: Collecting Mixes from Field Project
- ✓ **Step 2**: Performing Laboratory Tests



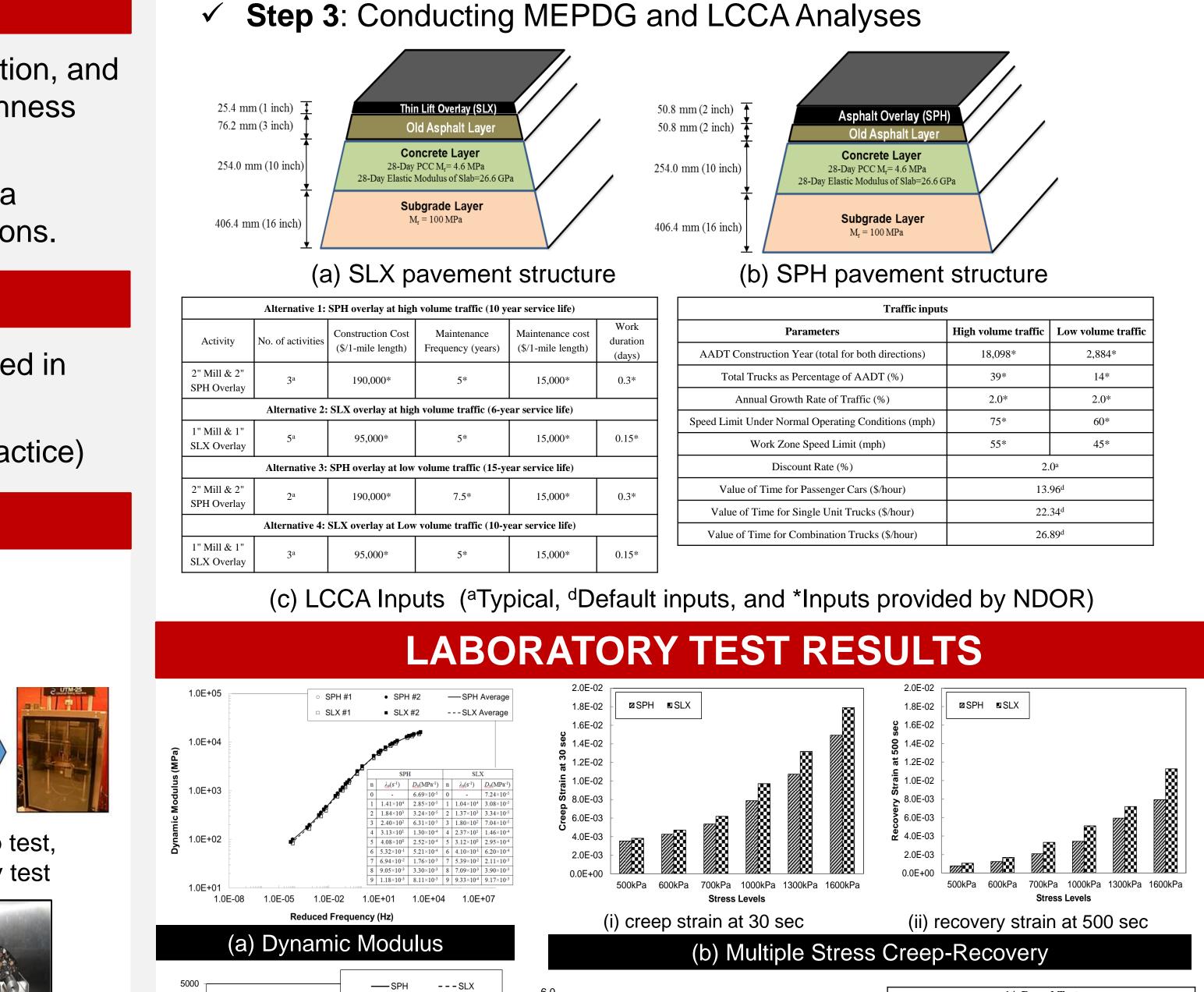
Project location and after overlay



Gradation of mixes

(a) Dynamic modulus test, dynamic creep test, and static, multiple stress creep-recovery test

(b) Semicircular bending (SCB) fracture test



(c) Hamburg wheel tracking test

Soohyok Im¹, Taesun You², Yong-Rak Kim², Gabriel Nsengiyumva²,

Robert Rea³, and Hamzeh Haghshenas²

¹Texas A&M Transportation Institute, ²University of Nebraska-Lincoln ³Nebraska Department of Roads

Cycle Numbers

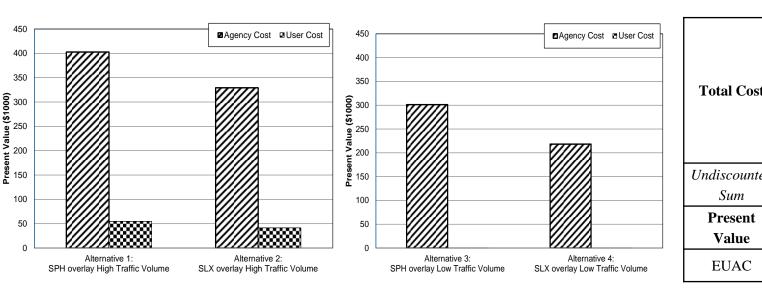
c) Dynamic Creep

inputs					
	High volume traffic	Low volume traffic			
s)	18,098*	2,884*			
	39*	14*			
	2.0*	2.0*			
nph)	75*	60*			
	55*	45*			
	2.0ª				
	13.96 ^d				
	22.34 ^d				
	26.89 ^d				
	•				

SPH 100mm/mi

SPH 200mm/mir SPH 400mm/min

- - SLX 200mm/mir


(d) SCB Fracture

	1 st . Rou	ınd Test	
Number of	Rut De	pth (mm)	Number of
Passes	SPH	SLX	Passes
5,000	-2.27	-3.48	5,000
10,000	-2.69	-5.25	10,000
15,000	-3.41	-11.55	15,000
20,000 (Pass)	-4.38	-12.59	15,400 (Fail)
	2 nd . Rou	und Test	·
5,000	-2.54	-3.47	5,000
10,000	-3.18	-5.66	10,000
15,000	-4.00	-11.38	15,000
20,000 (Pass)	-4.80	-12.05	15,300 (Fail)

(e) Hamburg Wheel Tracking

(a) MEPDG Results					
	SLX	structure	SPH Structure		
Performance Criteria	Distress Predicted	Reliability Predicted	Distress Predicted	Reliability Predicted	
Long. Cracking (ft/mile)	7	92.03 (Pass)	0	99.99 (Pass)	
Bottom Up Cracking (%)	0	99.99 (Pass)	0	99.99 (Pass)	
Rutting (AC Only) (in):	0.27	40.01 (Fail)	0.11	99.99 (Pass)	

(b) LCCA Results

CONCLUSION

- \checkmark Test results indicated that the two mixtures are similar in stiffness characteristics and cracking resistance.
- ✓ It was shown that the SLX mixture was more susceptible to moistureinduced damage than the SPH mixture.
- ✓ Based on the laboratory test results, MEPDG predictions, and LCCA results, the thin-lift overlay pavements that replace 1-inch thick old asphalt with a new SLX mix are expected to perform satisfactorily.
- \checkmark The thin-lift overlay practice is expected to provide several benefits, including quickly opening highways to the public due to faster paving and a safer driving surface.

MEPDG & I CCA RESULTS

st	Alternative 1: SPH overlay high traffic volume		Alternative 2: SLX overlay high traffic volume		Alternative 3: SPH overlay low traffic volume		Alternative 4: SLX overlay low traffic volume	
	Agency Cost (\$1000)	User Cost (\$1000)	Agency Cost (\$1000)	User Cost (\$1000)	Agency Cost (\$1000)	User Cost (\$1000)	Agency Cost (\$1000)	User Cost (\$1000)
nted	\$425.00	\$56.60	\$360.00	\$43.10	\$315.00	\$0.13	\$235.00	\$0.09
t	\$402.71	\$54.79	\$329.27	\$41.47	\$301.23	\$0.12	\$218.29	\$0.08
	\$17.98	\$2.45	\$14.70	\$1.85	\$13.45	\$0.01	\$9.75	\$0.00

